From nobody Thu Dec 26 01:01:33 2024 Delivered-To: importer@patchew.org Authentication-Results: mx.zohomail.com; spf=none (zoho.com: 198.145.21.10 is neither permitted nor denied by domain of lists.01.org) smtp.mailfrom=edk2-devel-bounces@lists.01.org Return-Path: Received: from ml01.01.org (ml01.01.org [198.145.21.10]) by mx.zohomail.com with SMTPS id 1508246978380331.5396610356896; Tue, 17 Oct 2017 06:29:38 -0700 (PDT) Received: from [127.0.0.1] (localhost [IPv6:::1]) by ml01.01.org (Postfix) with ESMTP id 25C6F2095B09B; Tue, 17 Oct 2017 06:26:01 -0700 (PDT) Received: from mga07.intel.com (mga07.intel.com [134.134.136.100]) (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)) (No client certificate requested) by ml01.01.org (Postfix) with ESMTPS id 3CB822095B072 for ; Tue, 17 Oct 2017 06:25:59 -0700 (PDT) Received: from fmsmga002.fm.intel.com ([10.253.24.26]) by orsmga105.jf.intel.com with ESMTP; 17 Oct 2017 06:29:35 -0700 Received: from jwang36-mobl2.ccr.corp.intel.com ([10.254.211.53]) by fmsmga002.fm.intel.com with ESMTP; 17 Oct 2017 06:29:29 -0700 X-Original-To: edk2-devel@lists.01.org Received-SPF: none (zoho.com: 198.145.21.10 is neither permitted nor denied by domain of lists.01.org) client-ip=198.145.21.10; envelope-from=edk2-devel-bounces@lists.01.org; helo=ml01.01.org; Received-SPF: Pass (sender SPF authorized) identity=mailfrom; client-ip=134.134.136.100; helo=mga07.intel.com; envelope-from=jian.j.wang@intel.com; receiver=edk2-devel@lists.01.org X-ExtLoop1: 1 X-IronPort-AV: E=Sophos;i="5.43,391,1503385200"; d="scan'208";a="1231731209" From: Jian J Wang To: edk2-devel@lists.01.org Date: Tue, 17 Oct 2017 21:29:19 +0800 Message-Id: <20171017132924.19732-2-jian.j.wang@intel.com> X-Mailer: git-send-email 2.14.1.windows.1 In-Reply-To: <20171017132924.19732-1-jian.j.wang@intel.com> References: <20171017132924.19732-1-jian.j.wang@intel.com> Subject: [edk2] [PATCH v2 1/6] MdeModulePkg/DxeCore: Implement heap guard feature for UEFI X-BeenThere: edk2-devel@lists.01.org X-Mailman-Version: 2.1.22 Precedence: list List-Id: EDK II Development List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Cc: Michael Kinney , Jiewen Yao , Eric Dong , Star Zeng MIME-Version: 1.0 Content-Transfer-Encoding: quoted-printable Errors-To: edk2-devel-bounces@lists.01.org Sender: "edk2-devel" X-ZohoMail: RSF_4 Z_629925259 SPT_0 Content-Type: text/plain; charset="utf-8" > According to Eric's feedback: > a. Remove local variable initializer with memory copy from globals > b. Add comment for the use of mOnGuarding > c. Change map table dump code to use DEBUG_PAGE|DEBUG_POOL level > message=20 > > Other changes: > d. Fix issues in 32-bit boot mode > e. Remove prototype of empty functions > This feature makes use of paging mechanism to add a hidden (not present) page just before and after the allocated memory block. If the code tries to access memory outside of the allocated part, page fault exception will be triggered. This feature is controlled by three PCDs: gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPropertyMask gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPoolType gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPageType BIT0 and BIT1 of PcdHeapGuardPropertyMask can be used to enable or disable memory guard for page and pool respectively. PcdHeapGuardPoolType and/or PcdHeapGuardPageType are used to enable or disable guard for specific type of memory. For example, we can turn on guard only for EfiBootServicesData and EfiRuntimeServicesData by setting the PCD with value 0x50. Pool memory is not ususally integer multiple of one page, and is more likely less than a page. There's no way to monitor the overflow at both top and bottom of pool memory. BIT7 of PcdHeapGuardPropertyMask is used to control how to position the head of pool memory so that it's easier to catch memory overflow in memory growing direction or in decreasing direction. Note: Turning on heap guard, especially pool guard, will introduce too many memory fragments. Windows 10 has a limitation in its boot loader, which accepts at most 512 memory descriptors passed from BIOS. This will prevent Windows 10 from booting if heap guard is enabled. The latest Linux distribution with grub boot loader has no such issue. Normally it's not recommended to enable this feature in production build of BIOS. Cc: Star Zeng Cc: Eric Dong Cc: Jiewen Yao Cc: Michael Kinney Suggested-by: Ayellet Wolman Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang --- MdeModulePkg/Core/Dxe/DxeMain.inf | 4 + MdeModulePkg/Core/Dxe/Mem/HeapGuard.c | 1184 +++++++++++++++++++++++++++++= ++++ MdeModulePkg/Core/Dxe/Mem/HeapGuard.h | 380 +++++++++++ MdeModulePkg/Core/Dxe/Mem/Imem.h | 38 +- MdeModulePkg/Core/Dxe/Mem/Page.c | 129 +++- MdeModulePkg/Core/Dxe/Mem/Pool.c | 154 ++++- 6 files changed, 1825 insertions(+), 64 deletions(-) create mode 100644 MdeModulePkg/Core/Dxe/Mem/HeapGuard.c create mode 100644 MdeModulePkg/Core/Dxe/Mem/HeapGuard.h diff --git a/MdeModulePkg/Core/Dxe/DxeMain.inf b/MdeModulePkg/Core/Dxe/DxeM= ain.inf index e29d6c83ae..6b27714a79 100644 --- a/MdeModulePkg/Core/Dxe/DxeMain.inf +++ b/MdeModulePkg/Core/Dxe/DxeMain.inf @@ -56,6 +56,7 @@ Mem/MemData.c Mem/Imem.h Mem/MemoryProfileRecord.c + Mem/HeapGuard.c FwVolBlock/FwVolBlock.c FwVolBlock/FwVolBlock.h FwVol/FwVolWrite.c @@ -192,6 +193,9 @@ gEfiMdeModulePkgTokenSpaceGuid.PcdPropertiesTableEnable = ## CONSUMES gEfiMdeModulePkgTokenSpaceGuid.PcdImageProtectionPolicy = ## CONSUMES gEfiMdeModulePkgTokenSpaceGuid.PcdDxeNxMemoryProtectionPolicy = ## CONSUMES + gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPageType = ## CONSUMES + gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPoolType = ## CONSUMES + gEfiMdeModulePkgTokenSpaceGuid.PcdHeapGuardPropertyMask = ## CONSUMES =20 # [Hob] # RESOURCE_DESCRIPTOR ## CONSUMES diff --git a/MdeModulePkg/Core/Dxe/Mem/HeapGuard.c b/MdeModulePkg/Core/Dxe/= Mem/HeapGuard.c new file mode 100644 index 0000000000..49f6d3c62b --- /dev/null +++ b/MdeModulePkg/Core/Dxe/Mem/HeapGuard.c @@ -0,0 +1,1184 @@ +/** @file + UEFI Heap Guard functions. + +Copyright (c) 2017, Intel Corporation. All rights reserved.
+This program and the accompanying materials +are licensed and made available under the terms and conditions of the BSD = License +which accompanies this distribution. The full text of the license may be = found at +http://opensource.org/licenses/bsd-license.php + +THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, +WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLI= ED. + +**/ + +#include "DxeMain.h" +#include "Imem.h" +#include "HeapGuard.h" + +// +// Global to avoid infinite reentrance of memory allocation when updating +// page table attributes, which may need allocate pages for new PDE/PTE. +// +GLOBAL_REMOVE_IF_UNREFERENCED BOOLEAN mOnGuarding =3D FALSE; + +// +// Pointer to table tracking the Guarded memory with bitmap, in which '1' +// is used to indicate memory guarded. '0' might be free memory or Guard +// page itself, depending on status of memory adjacent to it. +// +GLOBAL_REMOVE_IF_UNREFERENCED UINT64 mGuardedMemoryMap =3D 0; + +// +// Current depth level of map table pointed by mGuardedMemoryMap. +// mMapLevel must be initialized at least by 1. It will be automatically +// updated according to the address of memory just tracked. +// +GLOBAL_REMOVE_IF_UNREFERENCED UINTN mMapLevel =3D 1; + +// +// Shift and mask for each level of map table +// +GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelShift[GUARDED_HEAP_MAP_TABLE_DEP= TH] + =3D GUARDED_HEAP_MAP_TABLE_DEPTH_SHIFT= S; +GLOBAL_REMOVE_IF_UNREFERENCED UINTN mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPT= H] + =3D GUARDED_HEAP_MAP_TABLE_DEPTH_MASKS; + +/** + Set corresponding bits in bitmap table to 1 according to the address + + @param[in] Address Start address to set for + @param[in] BitNumber Number of bits to set + @param[in] BitMap Pointer to bitmap which covers the Address + + @return VOID +**/ +STATIC +VOID +SetBits ( + IN EFI_PHYSICAL_ADDRESS Address, + IN UINTN BitNumber, + IN UINT64 *BitMap + ) +{ + UINTN Lsbs; + UINTN Qwords; + UINTN Msbs; + UINTN StartBit; + UINTN EndBit; + + StartBit =3D (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address); + EndBit =3D (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS; + + if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) { + Msbs =3D (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) % + GUARDED_HEAP_MAP_ENTRY_BITS; + Lsbs =3D (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS; + Qwords =3D (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS; + } else { + Msbs =3D BitNumber; + Lsbs =3D 0; + Qwords =3D 0; + } + + if (Msbs > 0) { + *BitMap |=3D LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit); + BitMap +=3D 1; + } + + if (Qwords > 0) { + SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES, + (UINT64)-1); + BitMap +=3D Qwords; + } + + if (Lsbs > 0) { + *BitMap |=3D (LShiftU64 (1, Lsbs) - 1); + } +} + +/** + Set corresponding bits in bitmap table to 0 according to the address + + @param[in] Address Start address to set for + @param[in] BitNumber Number of bits to set + @param[in] BitMap Pointer to bitmap which covers the Address + + @return VOID +**/ +STATIC +VOID +ClearBits ( + IN EFI_PHYSICAL_ADDRESS Address, + IN UINTN BitNumber, + IN UINT64 *BitMap + ) +{ + UINTN Lsbs; + UINTN Qwords; + UINTN Msbs; + UINTN StartBit; + UINTN EndBit; + + StartBit =3D (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address); + EndBit =3D (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS; + + if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) { + Msbs =3D (GUARDED_HEAP_MAP_ENTRY_BITS - StartBit) % + GUARDED_HEAP_MAP_ENTRY_BITS; + Lsbs =3D (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS; + Qwords =3D (BitNumber - Msbs) / GUARDED_HEAP_MAP_ENTRY_BITS; + } else { + Msbs =3D BitNumber; + Lsbs =3D 0; + Qwords =3D 0; + } + + if (Msbs > 0) { + *BitMap &=3D ~LShiftU64 (LShiftU64 (1, Msbs) - 1, StartBit); + BitMap +=3D 1; + } + + if (Qwords > 0) { + SetMem64 ((VOID *)BitMap, Qwords * GUARDED_HEAP_MAP_ENTRY_BYTES, 0); + BitMap +=3D Qwords; + } + + if (Lsbs > 0) { + *BitMap &=3D ~(LShiftU64 (1, Lsbs) - 1); + } +} + +/** + Get corresponding bits in bitmap table according to the address + + The value of bit 0 corresponds to the status of memory at given Address. + No more than 64 bits can be retrieved in one call. + + @param[in] Address Start address to retrieve bits for + @param[in] BitNumber Number of bits to get + @param[in] BitMap Pointer to bitmap which covers the Address + + @return An integer containing the bits information +**/ +STATIC +UINT64 +GetBits ( + IN EFI_PHYSICAL_ADDRESS Address, + IN UINTN BitNumber, + IN UINT64 *BitMap + ) +{ + UINTN StartBit; + UINTN EndBit; + UINTN Lsbs; + UINTN Msbs; + UINT64 Result; + + ASSERT (BitNumber <=3D GUARDED_HEAP_MAP_ENTRY_BITS); + + StartBit =3D (UINTN)GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address); + EndBit =3D (StartBit + BitNumber - 1) % GUARDED_HEAP_MAP_ENTRY_BITS; + + if ((StartBit + BitNumber) > GUARDED_HEAP_MAP_ENTRY_BITS) { + Msbs =3D GUARDED_HEAP_MAP_ENTRY_BITS - StartBit; + Lsbs =3D (EndBit + 1) % GUARDED_HEAP_MAP_ENTRY_BITS; + } else { + Msbs =3D BitNumber; + Lsbs =3D 0; + } + + Result =3D RShiftU64 ((*BitMap), StartBit) & (LShiftU64 (1, Msbs) - 1= ); + if (Lsbs > 0) { + BitMap +=3D 1; + Result |=3D LShiftU64 ((*BitMap) & (LShiftU64 (1, Lsbs) - 1), Msbs); + } + + return Result; +} + +/** + Locate the pointer of bitmap from the guarded memory bitmap tables, which + covers the given Address. + + @param[in] Address Start address to search the bitmap for + @param[in] AllocMapUnit Flag to indicate memory allocation for the tab= le + @param[out] BitMap Pointer to bitmap which covers the Address + + @return The bit number from given Address to the end of current map table +**/ +UINTN +FindGuardedMemoryMap ( + IN EFI_PHYSICAL_ADDRESS Address, + IN BOOLEAN AllocMapUnit, + OUT UINT64 **BitMap + ) +{ + UINTN Level; + UINT64 *GuardMap; + UINT64 MapMemory; + UINTN Index; + UINTN Size; + UINTN BitsToUnitEnd; + EFI_STATUS Status; + + // + // Adjust current map table depth according to the address to access + // + while (mMapLevel < GUARDED_HEAP_MAP_TABLE_DEPTH + && + RShiftU64 ( + Address, + mLevelShift[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1] + ) !=3D 0) { + + if (mGuardedMemoryMap !=3D 0) { + Size =3D (mLevelMask[GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel - 1] += 1) + * GUARDED_HEAP_MAP_ENTRY_BYTES; + Status =3D CoreInternalAllocatePages ( + AllocateAnyPages, + EfiBootServicesData, + EFI_SIZE_TO_PAGES (Size), + &MapMemory, + FALSE + ); + ASSERT_EFI_ERROR (Status); + ASSERT (MapMemory !=3D 0); + + SetMem ((VOID *)(UINTN)MapMemory, Size, 0); + + *(UINT64 *)(UINTN)MapMemory =3D mGuardedMemoryMap; + mGuardedMemoryMap =3D MapMemory; + } + + mMapLevel++; + + } + + GuardMap =3D &mGuardedMemoryMap; + for (Level =3D GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel; + Level < GUARDED_HEAP_MAP_TABLE_DEPTH; + ++Level) { + + if (*GuardMap =3D=3D 0) { + if (!AllocMapUnit) { + GuardMap =3D NULL; + break; + } + + Size =3D (mLevelMask[Level] + 1) * GUARDED_HEAP_MAP_ENTRY_BYTES; + Status =3D CoreInternalAllocatePages ( + AllocateAnyPages, + EfiBootServicesData, + EFI_SIZE_TO_PAGES (Size), + &MapMemory, + FALSE + ); + ASSERT_EFI_ERROR (Status); + ASSERT (MapMemory !=3D 0); + + SetMem ((VOID *)(UINTN)MapMemory, Size, 0); + *GuardMap =3D MapMemory; + } + + Index =3D (UINTN)RShiftU64 (Address, mLevelShift[Level]); + Index &=3D mLevelMask[Level]; + GuardMap =3D (UINT64 *)(UINTN)((*GuardMap) + Index * sizeof (UINT64)); + + } + + BitsToUnitEnd =3D GUARDED_HEAP_MAP_BITS - GUARDED_HEAP_MAP_BIT_INDEX (Ad= dress); + *BitMap =3D GuardMap; + + return BitsToUnitEnd; +} + +/** + Set corresponding bits in bitmap table to 1 according to given memory ra= nge + + @param[in] Address Memory address to guard from + @param[in] NumberOfPages Number of pages to guard + + @return VOID +**/ +VOID +EFIAPI +SetGuardedMemoryBits ( + IN EFI_PHYSICAL_ADDRESS Address, + IN UINTN NumberOfPages + ) +{ + UINT64 *BitMap; + UINTN Bits; + UINTN BitsToUnitEnd; + + while (NumberOfPages > 0) { + BitsToUnitEnd =3D FindGuardedMemoryMap (Address, TRUE, &BitMap); + ASSERT (BitMap !=3D NULL); + + if (NumberOfPages > BitsToUnitEnd) { + // Cross map unit + Bits =3D BitsToUnitEnd; + } else { + Bits =3D NumberOfPages; + } + + SetBits (Address, Bits, BitMap); + + NumberOfPages -=3D Bits; + Address +=3D EFI_PAGES_TO_SIZE (Bits); + } +} + +/** + Clear corresponding bits in bitmap table according to given memory range + + @param[in] Address Memory address to unset from + @param[in] NumberOfPages Number of pages to unset guard + + @return VOID +**/ +VOID +EFIAPI +ClearGuardedMemoryBits ( + IN EFI_PHYSICAL_ADDRESS Address, + IN UINTN NumberOfPages + ) +{ + UINT64 *BitMap; + UINTN Bits; + UINTN BitsToUnitEnd; + + while (NumberOfPages > 0) { + BitsToUnitEnd =3D FindGuardedMemoryMap (Address, TRUE, &BitMap); + ASSERT (BitMap !=3D NULL); + + if (NumberOfPages > BitsToUnitEnd) { + // Cross map unit + Bits =3D BitsToUnitEnd; + } else { + Bits =3D NumberOfPages; + } + + ClearBits (Address, Bits, BitMap); + + NumberOfPages -=3D Bits; + Address +=3D EFI_PAGES_TO_SIZE (Bits); + } +} + +/** + Retrieve corresponding bits in bitmap table according to given memory ra= nge + + @param[in] Address Memory address to retrieve from + @param[in] NumberOfPages Number of pages to retrieve + + @return VOID +**/ +UINTN +GetGuardedMemoryBits ( + IN EFI_PHYSICAL_ADDRESS Address, + IN UINTN NumberOfPages + ) +{ + UINT64 *BitMap; + UINTN Bits; + UINTN Result; + UINTN Shift; + UINTN BitsToUnitEnd; + + ASSERT (NumberOfPages <=3D GUARDED_HEAP_MAP_ENTRY_BITS); + + Result =3D 0; + Shift =3D 0; + while (NumberOfPages > 0) { + BitsToUnitEnd =3D FindGuardedMemoryMap (Address, FALSE, &BitMap); + + if (NumberOfPages > BitsToUnitEnd) { + // Cross map unit + Bits =3D BitsToUnitEnd; + } else { + Bits =3D NumberOfPages; + } + + if (BitMap !=3D NULL) { + Result |=3D LShiftU64 (GetBits (Address, Bits, BitMap), Shift); + } + + Shift +=3D Bits; + NumberOfPages -=3D Bits; + Address +=3D EFI_PAGES_TO_SIZE (Bits); + } + + return Result; +} + +/** + Get bit value in bitmap table for the given address + + @param[in] Address The address to retrieve for + + @return 1 or 0 +**/ +UINTN +EFIAPI +GetGuardMapBit ( + IN EFI_PHYSICAL_ADDRESS Address + ) +{ + UINT64 *GuardMap; + + FindGuardedMemoryMap (Address, FALSE, &GuardMap); + if (GuardMap !=3D NULL) { + if (RShiftU64 (*GuardMap, + GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address)) & 1) { + return 1; + } + } + + return 0; +} + +/** + Set the bit in bitmap table for the given address + + @param[in] Address The address to set for + + @return VOID +**/ +VOID +EFIAPI +SetGuardMapBit ( + IN EFI_PHYSICAL_ADDRESS Address + ) +{ + UINT64 *GuardMap; + UINT64 BitMask; + + FindGuardedMemoryMap (Address, TRUE, &GuardMap); + if (GuardMap !=3D NULL) { + BitMask =3D LShiftU64 (1, GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address)); + *GuardMap |=3D BitMask; + } +} + +/** + Clear the bit in bitmap table for the given address + + @param[in] Address The address to clear for + + @return VOID +**/ +VOID +EFIAPI +ClearGuardMapBit ( + IN EFI_PHYSICAL_ADDRESS Address + ) +{ + UINT64 *GuardMap; + UINT64 BitMask; + + FindGuardedMemoryMap (Address, TRUE, &GuardMap); + if (GuardMap !=3D NULL) { + BitMask =3D LShiftU64 (1, GUARDED_HEAP_MAP_ENTRY_BIT_INDEX (Address)); + *GuardMap &=3D ~BitMask; + } +} + +/** + Check to see if the page at the given address is a Guard page or not + + @param[in] Address The address to check for + + @return TRUE The page at Address is a Guard page + @return FALSE The page at Address is not a Guard page +**/ +BOOLEAN +EFIAPI +IsGuardPage ( + IN EFI_PHYSICAL_ADDRESS Address + ) +{ + UINTN BitMap; + + BitMap =3D GetGuardedMemoryBits (Address - EFI_PAGE_SIZE, 3); + return (BitMap =3D=3D 0b001 || BitMap =3D=3D 0b100 || BitMap =3D=3D 0b10= 1); +} + +/** + Check to see if the page at the given address is a head Guard page or not + + @param[in] Address The address to check for + + @return TRUE The page at Address is a head Guard page + @return FALSE The page at Address is not a head Guard page +**/ +BOOLEAN +EFIAPI +IsHeadGuard ( + IN EFI_PHYSICAL_ADDRESS Address + ) +{ + return (GetGuardedMemoryBits (Address, 2) =3D=3D 0b10); +} + +/** + Check to see if the page at the given address is a tail Guard page or not + + @param[in] Address The address to check for + + @return TRUE The page at Address is a tail Guard page + @return FALSE The page at Address is not a tail Guard page +**/ +BOOLEAN +EFIAPI +IsTailGuard ( + IN EFI_PHYSICAL_ADDRESS Address + ) +{ + return (GetGuardedMemoryBits (Address - EFI_PAGE_SIZE, 2) =3D=3D 0b01); +} + +/** + Check to see if the page at the given address is guarded or not + + @param[in] Address The address to check for + + @return TRUE The page at Address is guarded + @return FALSE The page at Address is not guarded +**/ +BOOLEAN +EFIAPI +IsMemoryGuarded ( + IN EFI_PHYSICAL_ADDRESS Address + ) +{ + return (GetGuardMapBit (Address) =3D=3D 1); +} + +/** + Set the page at the given address to be a Guard page. + + This is done by changing the page table attribute to be NOT PRSENT. + + @param[in] Address Page address to Guard at + + @return VOID +**/ +VOID +EFIAPI +SetGuardPage ( + IN EFI_PHYSICAL_ADDRESS BaseAddress + ) +{ + // + // Set flag to make sure allocating memory without GUARD for page table + // operation; otherwise infinite loops could be caused. + // + mOnGuarding =3D TRUE; + gCpu->SetMemoryAttributes (gCpu, BaseAddress, EFI_PAGE_SIZE, EFI_MEMORY_= RP); + mOnGuarding =3D FALSE; +} + +/** + Unset the Guard page at the given address to the normal memory. + + This is done by changing the page table attribute to be PRSENT. + + @param[in] Address Page address to Guard at + + @return VOID +**/ +VOID +EFIAPI +UnsetGuardPage ( + IN EFI_PHYSICAL_ADDRESS BaseAddress + ) +{ + // + // Set flag to make sure allocating memory without GUARD for page table + // operation; otherwise infinite loops could be caused. + // + mOnGuarding =3D TRUE; + gCpu->SetMemoryAttributes (gCpu, BaseAddress, EFI_PAGE_SIZE, 0); + mOnGuarding =3D FALSE; +} + +/** + Check to see if the memory at the given address should be guarded or not + + @param[in] MemoryType Memory type to check + @param[in] AllocateType Allocation type to check + @param[in] PageOrPool Indicate a page allocation or pool allocation + + + @return TRUE The given type of memory should be guarded + @return FALSE The given type of memory should not be guarded +**/ +BOOLEAN +IsMemoryTypeToGuard ( + IN EFI_MEMORY_TYPE MemoryType, + IN EFI_ALLOCATE_TYPE AllocateType, + IN UINT8 PageOrPool + ) +{ + UINT64 TestBit; + UINT64 ConfigBit; + BOOLEAN InSmm; + + if (gCpu =3D=3D NULL || AllocateType =3D=3D AllocateAddress) { + return FALSE; + } + + InSmm =3D FALSE; + if (gSmmBase2 !=3D NULL) { + gSmmBase2->InSmm (gSmmBase2, &InSmm); + } + + if (InSmm) { + return FALSE; + } + + if ((PcdGet8 (PcdHeapGuardPropertyMask) & PageOrPool) =3D=3D 0) { + return FALSE; + } + + if (PageOrPool =3D=3D GUARD_HEAP_TYPE_POOL) { + ConfigBit =3D PcdGet64 (PcdHeapGuardPoolType); + } else if (PageOrPool =3D=3D GUARD_HEAP_TYPE_PAGE) { + ConfigBit =3D PcdGet64 (PcdHeapGuardPageType); + } else { + ConfigBit =3D (UINT64)-1; + } + + if ((UINT32)MemoryType >=3D MEMORY_TYPE_OS_RESERVED_MIN) { + TestBit =3D BIT63; + } else if ((UINT32) MemoryType >=3D MEMORY_TYPE_OEM_RESERVED_MIN) { + TestBit =3D BIT62; + } else if (MemoryType < EfiMaxMemoryType) { + TestBit =3D LShiftU64 (1, MemoryType); + } else if (MemoryType =3D=3D EfiMaxMemoryType) { + TestBit =3D (UINT64)-1; + } else { + TestBit =3D 0; + } + + return ((ConfigBit & TestBit) !=3D 0); +} + +/** + Check to see if the pool at the given address should be guarded or not + + @param[in] MemoryType Pool type to check + + + @return TRUE The given type of pool should be guarded + @return FALSE The given type of pool should not be guarded +**/ +BOOLEAN +IsPoolTypeToGuard ( + IN EFI_MEMORY_TYPE MemoryType + ) +{ + return IsMemoryTypeToGuard (MemoryType, AllocateAnyPages, + GUARD_HEAP_TYPE_POOL); +} + +/** + Check to see if the page at the given address should be guarded or not + + @param[in] MemoryType Page type to check + @param[in] AllocateType Allocation type to check + + @return TRUE The given type of page should be guarded + @return FALSE The given type of page should not be guarded +**/ +BOOLEAN +IsPageTypeToGuard ( + IN EFI_MEMORY_TYPE MemoryType, + IN EFI_ALLOCATE_TYPE AllocateType + ) +{ + return IsMemoryTypeToGuard (MemoryType, AllocateType, GUARD_HEAP_TYPE_PA= GE); +} + +/** + Set head Guard and tail Guard for the given memory range + + @param[in] Memory Base address of memory to set guard for + @param[in] NumberOfPages Memory size in pages + + @return VOID +**/ +VOID +SetGuardForMemory ( + IN EFI_PHYSICAL_ADDRESS Memory, + IN UINTN NumberOfPages + ) +{ + EFI_PHYSICAL_ADDRESS GuardPage; + + // + // Set tail Guard + // + GuardPage =3D Memory + EFI_PAGES_TO_SIZE (NumberOfPages); + if (!IsGuardPage (GuardPage)) { + SetGuardPage (GuardPage); + } + + // Set head Guard + GuardPage =3D Memory - EFI_PAGES_TO_SIZE (1); + if (!IsGuardPage (GuardPage)) { + SetGuardPage (GuardPage); + } + + // + // Mark the memory range as Guarded + // + SetGuardedMemoryBits (Memory, NumberOfPages); +} + +/** + Unset head Guard and tail Guard for the given memory range + + @param[in] Memory Base address of memory to unset guard for + @param[in] NumberOfPages Memory size in pages + + @return VOID +**/ +VOID +UnsetGuardForMemory ( + IN EFI_PHYSICAL_ADDRESS Memory, + IN UINTN NumberOfPages + ) +{ + EFI_PHYSICAL_ADDRESS GuardPage; + + if (NumberOfPages =3D=3D 0) { + return; + } + + // + // Head Guard must be one page before, if any. + // + GuardPage =3D Memory - EFI_PAGES_TO_SIZE (1); + if (IsHeadGuard (GuardPage)) { + if (!IsMemoryGuarded (GuardPage - EFI_PAGES_TO_SIZE (1))) { + // + // If the head Guard is not a tail Guard of adjacent memory block, + // unset it. + // + UnsetGuardPage (GuardPage); + } + } else if (IsMemoryGuarded (GuardPage)) { + // + // Pages before memory to free are still in Guard. It's a partial free + // case. Turn first page of memory block to free into a new Guard. + // + SetGuardPage (Memory); + } + + // + // Tail Guard must be the page after this memory block to free, if any. + // + GuardPage =3D Memory + EFI_PAGES_TO_SIZE (NumberOfPages); + if (IsTailGuard (GuardPage)) { + if (!IsMemoryGuarded (GuardPage + EFI_PAGES_TO_SIZE (1))) { + // + // If the tail Guard is not a head Guard of adjacent memory block, + // free it; otherwise, keep it. + // + UnsetGuardPage (GuardPage); + } + } else if (IsMemoryGuarded (GuardPage)) { + // + // Pages after memory to free are still in Guard. It's a partial free + // case. We need to keep one page to be a head Guard. + // + SetGuardPage (GuardPage - EFI_PAGES_TO_SIZE (1)); + } + + // + // No matter what, we just clear the mark of the Guarded memory. + // + ClearGuardedMemoryBits(Memory, NumberOfPages); +} + +/** + Adjust address of free memory according to existing and/or required Guard + + This function will check if there're existing Guard pages of adjacent + memory blocks, and try to use it as the Guard page of the memory to be + allocated. + + @param[in] Start Start address of free memory block + @param[in] Size Size of free memory block + @param[in] SizeRequested Size of memory to allocate + + @return The end address of memory block found + @return 0 if no enough space for the required size of memory and its Gua= rd +**/ +UINT64 +AdjustMemoryS ( + IN UINT64 Start, + IN UINT64 Size, + IN UINT64 SizeRequested + ) +{ + UINT64 Target; + + Target =3D Start + Size - SizeRequested; + + // + // At least one more page needed for Guard page. + // + if (Size < (SizeRequested + EFI_PAGES_TO_SIZE (1))) { + return 0; + } + + if (!IsGuardPage (Start + Size)) { + // No Guard at tail to share. One more page is needed. + Target -=3D EFI_PAGES_TO_SIZE (1); + } + + // Out of range? + if (Target < Start) { + return 0; + } + + // At the edge? + if (Target =3D=3D Start) { + if (!IsGuardPage (Target - EFI_PAGES_TO_SIZE (1))) { + // No enough space for a new head Guard if no Guard at head to share. + return 0; + } + } + + // OK, we have enough pages for memory and its Guards. Return the End of= the + // free space. + return Target + SizeRequested - 1; +} + +/** + Adjust the start address and number of pages to free according to Guard + + The purpose of this function is to keep the shared Guard page with adjac= ent + memory block if it's still in guard, or free it if no more sharing. Anot= her + is to reserve pages as Guard pages in partial page free situation. + + @param[in/out] Memory Base address of memory to free + @param[in/out] NumberOfPages Size of memory to free + + @return VOID +**/ +VOID +AdjustMemoryF ( + IN OUT EFI_PHYSICAL_ADDRESS *Memory, + IN OUT UINTN *NumberOfPages + ) +{ + EFI_PHYSICAL_ADDRESS Start; + EFI_PHYSICAL_ADDRESS MemoryToTest; + UINTN PagesToFree; + + if (Memory =3D=3D NULL || NumberOfPages =3D=3D NULL || *NumberOfPages = =3D=3D 0) { + return; + } + + Start =3D *Memory; + PagesToFree =3D *NumberOfPages; + + // + // Head Guard must be one page before, if any. + // + MemoryToTest =3D Start - EFI_PAGES_TO_SIZE (1); + if (IsHeadGuard (MemoryToTest)) { + if (!IsMemoryGuarded (MemoryToTest - EFI_PAGES_TO_SIZE (1))) { + // + // If the head Guard is not a tail Guard of adjacent memory block, + // free it; otherwise, keep it. + // + Start -=3D EFI_PAGES_TO_SIZE (1); + PagesToFree +=3D 1; + } + } else if (IsMemoryGuarded (MemoryToTest)) { + // + // Pages before memory to free are still in Guard. It's a partial free + // case. We need to keep one page to be a tail Guard. + // + Start +=3D EFI_PAGES_TO_SIZE (1); + PagesToFree -=3D 1; + } + + // + // Tail Guard must be the page after this memory block to free, if any. + // + MemoryToTest =3D Start + EFI_PAGES_TO_SIZE (PagesToFree); + if (IsTailGuard (MemoryToTest)) { + if (!IsMemoryGuarded (MemoryToTest + EFI_PAGES_TO_SIZE (1))) { + // + // If the tail Guard is not a head Guard of adjacent memory block, + // free it; otherwise, keep it. + // + PagesToFree +=3D 1; + } + } else if (IsMemoryGuarded (MemoryToTest)) { + // + // Pages after memory to free are still in Guard. It's a partial free + // case. We need to keep one page to be a head Guard. + // + PagesToFree -=3D 1; + } + + *Memory =3D Start; + *NumberOfPages =3D PagesToFree; +} + +/** + Adjust the base and number of pages to really allocate according to Guard + + @param[in/out] Memory Base address of free memory + @param[in/out] NumberOfPages Size of memory to allocate + + @return VOID +**/ +VOID +AdjustMemoryA ( + IN OUT EFI_PHYSICAL_ADDRESS *Memory, + IN OUT UINTN *NumberOfPages + ) +{ + // + // FindFreePages() has already taken the Guard into account. It's safe to + // adjust the start address and/or number of pages here, to make sure th= at + // the Guards are also "allocated". + // + if (!IsGuardPage (*Memory + EFI_PAGES_TO_SIZE (*NumberOfPages))) { + // No tail Guard, add one. + *NumberOfPages +=3D 1; + } + + if (!IsGuardPage (*Memory - EFI_PAGE_SIZE)) { + // No head Guard, add one. + *Memory -=3D EFI_PAGE_SIZE; + *NumberOfPages +=3D 1; + } +} + +/** + Adjust the pool head position to make sure the Guard page is adjavent to + pool tail or pool head. + + @param[in] Memory Base address of memory allocated + @param[in] NoPages Number of pages actually allocated + @param[in] Size Size of memory requested + (plus pool head/tail overhead) + + @return Address of pool head +**/ +VOID * +AdjustPoolHeadA ( + IN EFI_PHYSICAL_ADDRESS Memory, + IN UINTN NoPages, + IN UINTN Size + ) +{ + if ((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) !=3D 0) { + // + // Pool head is put near the head Guard + // + return (VOID *)(UINTN)Memory; + } + + // + // Pool head is put near the tail Guard + // + return (VOID *)(UINTN)(Memory + EFI_PAGES_TO_SIZE (NoPages) - Size); +} + +/** + Get the page base address according to pool head address + + @param[in] Memory Head address of pool to free + + @return Address of pool head +**/ +VOID * +AdjustPoolHeadF ( + IN EFI_PHYSICAL_ADDRESS Memory + ) +{ + if ((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) !=3D 0) { + // + // Pool head is put near the head Guard + // + return (VOID *)(UINTN)Memory; + } + + // + // Pool head is put near the tail Guard + // + return (VOID *)(UINTN)(Memory & ~EFI_PAGE_MASK); +} + +/** + Allocate or free guarded memory + + @param[in] Start Start address of memory to allocate or free + @param[in] NumberOfPages Memory size in pages + @param[in] NewType Memory type to convert to + + @return VOID +**/ +EFI_STATUS +CoreConvertPagesWithGuard ( + IN UINT64 Start, + IN UINTN NumberOfPages, + IN EFI_MEMORY_TYPE NewType + ) +{ + if (NewType =3D=3D EfiConventionalMemory) { + AdjustMemoryF (&Start, &NumberOfPages); + } else { + AdjustMemoryA (&Start, &NumberOfPages); + } + + return CoreConvertPages(Start, NumberOfPages, NewType); +} + +/** + Helper function to convert a UINT64 value in binary to a string + + @param[in] Value Value of a UINT64 integer + @param[in] BinString String buffer to contain the conversion result + + @return VOID +**/ +VOID +Uint64ToBinString ( + IN UINT64 Value, + OUT CHAR8 *BinString + ) +{ + UINTN Index; + + if (BinString =3D=3D NULL) { + return; + } + + for (Index =3D 64; Index > 0; --Index) { + BinString[Index - 1] =3D '0' + (Value & 1); + Value =3D RShiftU64 (Value, 1); + } + BinString[64] =3D '\0'; +} + +/** + Dump the guarded memory bit map + + @return VOID +**/ +VOID +EFIAPI +DumpGuardedMemoryBitmap ( + VOID + ) +{ + UINTN Entries[GUARDED_HEAP_MAP_TABLE_DEPTH]; + UINTN Shifts[GUARDED_HEAP_MAP_TABLE_DEPTH]; + UINTN Indices[GUARDED_HEAP_MAP_TABLE_DEPTH]; + UINT64 Tables[GUARDED_HEAP_MAP_TABLE_DEPTH]; + UINT64 Addresses[GUARDED_HEAP_MAP_TABLE_DEPTH]; + UINT64 TableEntry; + UINT64 Address; + INTN Level; + UINTN RepeatZero; + CHAR8 String[GUARDED_HEAP_MAP_ENTRY_BITS + 1]; + CHAR8 *Ruler1; + CHAR8 *Ruler2; + + if (mGuardedMemoryMap =3D=3D 0) { + return; + } + + Ruler1 =3D " 3 2 1 = 0"; + Ruler2 =3D "FEDCBA9876543210FEDCBA9876543210FEDCBA9876543210FEDCBA987654= 3210"; + + DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D" + " Guarded Memory Bitmap " + "=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D\r\n")); + DEBUG ((HEAP_GUARD_DEBUG_LEVEL, " %a\r\n", Ruler1)); + DEBUG ((HEAP_GUARD_DEBUG_LEVEL, " %a\r\n", Ruler2)); + + CopyMem (Entries, mLevelMask, sizeof (Entries)); + CopyMem (Shifts, mLevelShift, sizeof (Shifts)); + + SetMem (Indices, sizeof(Indices), 0); + SetMem (Tables, sizeof(Tables), 0); + SetMem (Addresses, sizeof(Addresses), 0); + + Level =3D GUARDED_HEAP_MAP_TABLE_DEPTH - mMapLevel; + Tables[Level] =3D mGuardedMemoryMap; + Address =3D 0; + RepeatZero =3D 0; + + while (TRUE) { + if (Indices[Level] > Entries[Level]) { + + Tables[Level] =3D 0; + Level -=3D 1; + RepeatZero =3D 0; + + DEBUG (( + HEAP_GUARD_DEBUG_LEVEL, + "=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D" + "=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D\r\n" + )); + + } else { + + TableEntry =3D ((UINT64 *)(UINTN)Tables[Level])[Indices[Level]]; + Address =3D Addresses[Level]; + + if (TableEntry =3D=3D 0) { + + if (Level =3D=3D GUARDED_HEAP_MAP_TABLE_DEPTH - 1) { + if (RepeatZero =3D=3D 0) { + Uint64ToBinString(TableEntry, String); + DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, Str= ing)); + } else if (RepeatZero =3D=3D 1) { + DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "... : ...\r\n")); + } + RepeatZero +=3D 1; + } + + } else if (Level < GUARDED_HEAP_MAP_TABLE_DEPTH - 1) { + + Level +=3D 1; + Tables[Level] =3D TableEntry; + Addresses[Level] =3D Address; + Indices[Level] =3D 0; + RepeatZero =3D 0; + + continue; + + } else { + + RepeatZero =3D 0; + Uint64ToBinString(TableEntry, String); + DEBUG ((HEAP_GUARD_DEBUG_LEVEL, "%016lx: %a\r\n", Address, String)= ); + + } + } + + if (Level < (GUARDED_HEAP_MAP_TABLE_DEPTH - (INTN)mMapLevel)) { + break; + } + + Indices[Level] +=3D 1; + Address =3D (Level =3D=3D 0) ? 0 : Addresses[Level - 1]; + Addresses[Level] =3D Address | LShiftU64(Indices[Level], Shifts[Level]= ); + + } +} + diff --git a/MdeModulePkg/Core/Dxe/Mem/HeapGuard.h b/MdeModulePkg/Core/Dxe/= Mem/HeapGuard.h new file mode 100644 index 0000000000..ed7fe7a371 --- /dev/null +++ b/MdeModulePkg/Core/Dxe/Mem/HeapGuard.h @@ -0,0 +1,380 @@ +/** @file + Data type, macros and function prototypes of heap guard feature. + +Copyright (c) 2017, Intel Corporation. All rights reserved.
+This program and the accompanying materials +are licensed and made available under the terms and conditions of the BSD = License +which accompanies this distribution. The full text of the license may be = found at +http://opensource.org/licenses/bsd-license.php + +THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, +WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLI= ED. + +**/ + +#ifndef _HEAPGUARD_H_ +#define _HEAPGUARD_H_ + +// +// Following macros are used to define and access the guarded memory bitmap +// table. +// +// To simplify the access and reduce the memory used for this table, the +// table is constructed in the similar way as page table structure but in +// reverse direction, i.e. from bottom growing up to top. +// +// - 1-bit tracks 1 page (4KB) +// - 1-UINT64 map entry tracks 256KB memory +// - 1K-UINT64 map table tracks 256MB memory +// - Five levels of tables can track any address of memory of 64-bit +// system, like below. +// +// 512 * 512 * 512 * 512 * 1K * 64b * 4K +// 111111111 111111111 111111111 111111111 1111111111 111111 1111111111= 11 +// 63 54 45 36 27 17 11 = 0 +// 9b 9b 9b 9b 10b 6b 12b +// L0 -> L1 -> L2 -> L3 -> L4 -> bits -> page +// 1FF 1FF 1FF 1FF 3FF 3F FFF +// +// L4 table has 1K * sizeof(UINT64) =3D 8K (2-page), which can track 256MB +// memory. Each table of L0-L3 will be allocated when its memory address +// range is to be tracked. Only 1-page will be allocated each time. This +// can save memories used to establish this map table. +// +// For a normal configuration of system with 4G memory, two levels of tabl= es +// can track the whole memory, because two levels (L3+L4) of map tables ha= ve +// already coverred 37-bit of memory address. And for a normal UEFI BIOS, +// less than 128M memory would be consumed during boot. That means we just +// need +// +// 1-page (L3) + 2-page (L4) +// +// memory (3 pages) to track the memory allocation works. In this case, +// there's no need to setup L0-L2 tables. +// + +// +// Each entry occupies 8B/64b. 1-page can hold 512 entries, which spans 9 +// bits in address. (512 =3D 1 << 9) +// +#define BYTE_LENGTH_SHIFT 3 // (8 =3D 1 << 3) + +#define GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT \ + (EFI_PAGE_SHIFT - BYTE_LENGTH_SHIFT) + +#define GUARDED_HEAP_MAP_TABLE_DEPTH 5 + +// Use UINT64_index + bit_index_of_UINT64 to locate the bit in may +#define GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT 6 // (64 =3D 1 << = 6) + +#define GUARDED_HEAP_MAP_ENTRY_BITS \ + (1 << GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT) + +#define GUARDED_HEAP_MAP_ENTRY_BYTES \ + (GUARDED_HEAP_MAP_ENTRY_BITS / 8) + +// L4 table address width: 64 - 9 * 4 - 6 - 12 =3D 10b +#define GUARDED_HEAP_MAP_ENTRY_SHIFT \ + (GUARDED_HEAP_MAP_ENTRY_BITS \ + - GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT * 4 \ + - GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT \ + - EFI_PAGE_SHIFT) + +// L4 table address mask: (1 << 10 - 1) =3D 0x3FF +#define GUARDED_HEAP_MAP_ENTRY_MASK \ + ((1 << GUARDED_HEAP_MAP_ENTRY_SHIFT) - 1) + +// Size of each L4 table: (1 << 10) * 8 =3D 8KB =3D 2-page +#define GUARDED_HEAP_MAP_SIZE \ + ((1 << GUARDED_HEAP_MAP_ENTRY_SHIFT) * GUARDED_HEAP_MAP_ENTRY_BYTE= S) + +// Memory size tracked by one L4 table: 8KB * 8 * 4KB =3D 256MB +#define GUARDED_HEAP_MAP_UNIT_SIZE \ + (GUARDED_HEAP_MAP_SIZE * 8 * EFI_PAGE_SIZE) + +// L4 table entry number: 8KB / 8 =3D 1024 +#define GUARDED_HEAP_MAP_ENTRIES_PER_UNIT \ + (GUARDED_HEAP_MAP_SIZE / GUARDED_HEAP_MAP_ENTRY_BYTES) + +// L4 table entry indexing +#define GUARDED_HEAP_MAP_ENTRY_INDEX(Address) \ + (RShiftU64 (Address, EFI_PAGE_SHIFT \ + + GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT) \ + & GUARDED_HEAP_MAP_ENTRY_MASK) + +// L4 table entry bit indexing +#define GUARDED_HEAP_MAP_ENTRY_BIT_INDEX(Address) \ + (RShiftU64 (Address, EFI_PAGE_SHIFT) \ + & ((1 << GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT) - 1)) + +// +// Total bits (pages) tracked by one L4 table (65536-bit) +// +#define GUARDED_HEAP_MAP_BITS \ + (1 << (GUARDED_HEAP_MAP_ENTRY_SHIFT \ + + GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT)) + +// +// Bit indexing inside the whole L4 table (0 - 65535) +// +#define GUARDED_HEAP_MAP_BIT_INDEX(Address) \ + (RShiftU64 (Address, EFI_PAGE_SHIFT) \ + & ((1 << (GUARDED_HEAP_MAP_ENTRY_SHIFT \ + + GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT)) - 1)) + +// +// Memory address bit width tracked by L4 table: 10 + 6 + 12 =3D 28 +// +#define GUARDED_HEAP_MAP_TABLE_SHIFT \ + (GUARDED_HEAP_MAP_ENTRY_SHIFT + GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT \ + + EFI_PAGE_SHIFT) + +// +// Macro used to initialize the local array variable for map table travers= ing +// {55, 46, 37, 28, 18} +// +#define GUARDED_HEAP_MAP_TABLE_DEPTH_SHIFTS = \ + { = \ + GUARDED_HEAP_MAP_TABLE_SHIFT + GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT * 3,= \ + GUARDED_HEAP_MAP_TABLE_SHIFT + GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT * 2,= \ + GUARDED_HEAP_MAP_TABLE_SHIFT + GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT, = \ + GUARDED_HEAP_MAP_TABLE_SHIFT, = \ + EFI_PAGE_SHIFT + GUARDED_HEAP_MAP_ENTRY_BIT_SHIFT = \ + } + +// +// Masks used to extract address range of each level of table +// {0x1FF, 0x1FF, 0x1FF, 0x1FF, 0x3FF} +// +#define GUARDED_HEAP_MAP_TABLE_DEPTH_MASKS = \ + { = \ + (1 << GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT) - 1, = \ + (1 << GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT) - 1, = \ + (1 << GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT) - 1, = \ + (1 << GUARDED_HEAP_MAP_TABLE_ENTRY_SHIFT) - 1, = \ + (1 << GUARDED_HEAP_MAP_ENTRY_SHIFT) - 1 = \ + } + +// +// Memory type to guard (matching the related PCD definition) +// +#define GUARD_HEAP_TYPE_POOL BIT0 +#define GUARD_HEAP_TYPE_PAGE BIT1 + +// +// Debug message level +// +#define HEAP_GUARD_DEBUG_LEVEL (DEBUG_POOL|DEBUG_PAGE) + +typedef struct { + UINT32 TailMark; + UINT32 HeadMark; + EFI_PHYSICAL_ADDRESS Address; + LIST_ENTRY Link; +} HEAP_GUARD_NODE; + +EFI_STATUS +CoreConvertPages ( + IN UINT64 Start, + IN UINT64 NumberOfPages, + IN EFI_MEMORY_TYPE NewType + ); + +/** + Allocate or free guarded memory + + @param[in] Start Start address of memory to allocate or free + @param[in] NumberOfPages Memory size in pages + @param[in] NewType Memory type to convert to + + @return VOID +**/ +EFI_STATUS +CoreConvertPagesWithGuard ( + IN UINT64 Start, + IN UINTN NumberOfPages, + IN EFI_MEMORY_TYPE NewType + ); + +/** + Set head Guard and tail Guard for the given memory range + + @param[in] Memory Base address of memory to set guard for + @param[in] NumberOfPages Memory size in pages + + @return VOID +**/ +VOID +SetGuardForMemory ( + IN EFI_PHYSICAL_ADDRESS Memory, + IN UINTN NumberOfPages + ); + +/** + Unset head Guard and tail Guard for the given memory range + + @param[in] Memory Base address of memory to unset guard for + @param[in] NumberOfPages Memory size in pages + + @return VOID +**/ +VOID +UnsetGuardForMemory ( + IN EFI_PHYSICAL_ADDRESS Memory, + IN UINTN NumberOfPages + ); + +/** + Adjust the base and number of pages to really allocate according to Guard + + @param[in/out] Memory Base address of free memory + @param[in/out] NumberOfPages Size of memory to allocate + + @return VOID +**/ +VOID +AdjustMemoryA ( + IN OUT EFI_PHYSICAL_ADDRESS *Memory, + IN OUT UINTN *NumberOfPages + ); + +/** + Adjust the start address and number of pages to free according to Guard + + The purpose of this function is to keep the shared Guard page with adjac= ent + memory block if it's still in guard, or free it if no more sharing. Anot= her + is to reserve pages as Guard pages in partial page free situation. + + @param[in/out] Memory Base address of memory to free + @param[in/out] NumberOfPages Size of memory to free + + @return VOID +**/ +VOID +AdjustMemoryF ( + IN OUT EFI_PHYSICAL_ADDRESS *Memory, + IN OUT UINTN *NumberOfPages + ); + +/** + Adjust address of free memory according to existing and/or required Guard + + This function will check if there're existing Guard pages of adjacent + memory blocks, and try to use it as the Guard page of the memory to be + allocated. + + @param[in] Start Start address of free memory block + @param[in] Size Size of free memory block + @param[in] SizeRequested Size of memory to allocate + + @return The end address of memory block found + @return 0 if no enough space for the required size of memory and its Gua= rd +**/ +UINT64 +AdjustMemoryS ( + IN UINT64 Start, + IN UINT64 Size, + IN UINT64 SizeRequested + ); + +/** + Check to see if the pool at the given address should be guarded or not + + @param[in] MemoryType Pool type to check + + + @return TRUE The given type of pool should be guarded + @return FALSE The given type of pool should not be guarded +**/ +BOOLEAN +IsPoolTypeToGuard ( + IN EFI_MEMORY_TYPE MemoryType + ); + +/** + Check to see if the page at the given address should be guarded or not + + @param[in] MemoryType Page type to check + @param[in] AllocateType Allocation type to check + + @return TRUE The given type of page should be guarded + @return FALSE The given type of page should not be guarded +**/ +BOOLEAN +IsPageTypeToGuard ( + IN EFI_MEMORY_TYPE MemoryType, + IN EFI_ALLOCATE_TYPE AllocateType + ); + +/** + Check to see if the page at the given address is guarded or not + + @param[in] Address The address to check for + + @return TRUE The page at Address is guarded + @return FALSE The page at Address is not guarded +**/ +BOOLEAN +EFIAPI +IsMemoryGuarded ( + IN EFI_PHYSICAL_ADDRESS Address + ); + +/** + Check to see if the page at the given address is a Guard page or not + + @param[in] Address The address to check for + + @return TRUE The page at Address is a Guard page + @return FALSE The page at Address is not a Guard page +**/ +BOOLEAN +EFIAPI +IsGuardPage ( + IN EFI_PHYSICAL_ADDRESS Address + ); + +/** + Dump the guarded memory bit map + + @return VOID +**/ +VOID +EFIAPI +DumpGuardedMemoryBitmap ( + VOID + ); + +/** + Adjust the pool head position to make sure the Guard page is adjavent to + pool tail or pool head. + + @param[in] Memory Base address of memory allocated + @param[in] NoPages Number of pages actually allocated + @param[in] Size Size of memory requested + (plus pool head/tail overhead) + + @return Address of pool head +**/ +VOID * +AdjustPoolHeadA ( + IN EFI_PHYSICAL_ADDRESS Memory, + IN UINTN NoPages, + IN UINTN Size + ); + +/** + Get the page base address according to pool head address + + @param[in] Memory Head address of pool to free + + @return Address of pool head +**/ +VOID * +AdjustPoolHeadF ( + IN EFI_PHYSICAL_ADDRESS Memory + ); + +extern BOOLEAN mOnGuarding; + +#endif diff --git a/MdeModulePkg/Core/Dxe/Mem/Imem.h b/MdeModulePkg/Core/Dxe/Mem/I= mem.h index fb53f95575..e58a5d62ba 100644 --- a/MdeModulePkg/Core/Dxe/Mem/Imem.h +++ b/MdeModulePkg/Core/Dxe/Mem/Imem.h @@ -1,7 +1,7 @@ /** @file Data structure and functions to allocate and free memory space. =20 -Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.
+Copyright (c) 2006 - 2017, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD = License which accompanies this distribution. The full text of the license may be = found at @@ -61,6 +61,7 @@ typedef struct { @param PoolType The type of memory for the new pool pages @param NumberOfPages No of pages to allocate @param Alignment Bits to align. + @param NeedGuard Flag to indicate Guard page is needed or = not =20 @return The allocated memory, or NULL =20 @@ -69,7 +70,8 @@ VOID * CoreAllocatePoolPages ( IN EFI_MEMORY_TYPE PoolType, IN UINTN NumberOfPages, - IN UINTN Alignment + IN UINTN Alignment, + IN BOOLEAN NeedGuard ); =20 =20 @@ -95,6 +97,7 @@ CoreFreePoolPages ( =20 @param PoolType Type of pool to allocate @param Size The amount of pool to allocate + @param NeedGuard Flag to indicate Guard page is needed or = not =20 @return The allocate pool, or NULL =20 @@ -102,7 +105,8 @@ CoreFreePoolPages ( VOID * CoreAllocatePoolI ( IN EFI_MEMORY_TYPE PoolType, - IN UINTN Size + IN UINTN Size, + IN BOOLEAN NeedGuard ); =20 =20 @@ -145,6 +149,34 @@ CoreReleaseMemoryLock ( VOID ); =20 +/** + Allocates pages from the memory map. + + @param Type The type of allocation to perform + @param MemoryType The type of memory to turn the allocated = pages + into + @param NumberOfPages The number of pages to allocate + @param Memory A pointer to receive the base allocated m= emory + address + @param NeedGuard Flag to indicate Guard page is needed or = not + + @return Status. On success, Memory is filled in with the base address al= located + @retval EFI_INVALID_PARAMETER Parameters violate checking rules defined= in + spec. + @retval EFI_NOT_FOUND Could not allocate pages match the requir= ement. + @retval EFI_OUT_OF_RESOURCES No enough pages to allocate. + @retval EFI_SUCCESS Pages successfully allocated. + +**/ +EFI_STATUS +EFIAPI +CoreInternalAllocatePages ( + IN EFI_ALLOCATE_TYPE Type, + IN EFI_MEMORY_TYPE MemoryType, + IN UINTN NumberOfPages, + IN OUT EFI_PHYSICAL_ADDRESS *Memory, + IN BOOLEAN NeedGuard + ); =20 // // Internal Global data diff --git a/MdeModulePkg/Core/Dxe/Mem/Page.c b/MdeModulePkg/Core/Dxe/Mem/P= age.c index 3dd6d1b4a0..648b21d429 100644 --- a/MdeModulePkg/Core/Dxe/Mem/Page.c +++ b/MdeModulePkg/Core/Dxe/Mem/Page.c @@ -14,6 +14,7 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER= EXPRESS OR IMPLIED. =20 #include "DxeMain.h" #include "Imem.h" +#include "HeapGuard.h" =20 // // Entry for tracking the memory regions for each memory type to coalesce = similar memory types @@ -285,9 +286,12 @@ AllocateMemoryMapEntry ( // // The list is empty, to allocate one page to refuel the list // - FreeDescriptorEntries =3D CoreAllocatePoolPages (EfiBootServicesData, + FreeDescriptorEntries =3D CoreAllocatePoolPages ( + EfiBootServicesData, EFI_SIZE_TO_PAGES (DEFAULT_PAGE_ALLOCATION_G= RANULARITY), - DEFAULT_PAGE_ALLOCATION_GRANULARITY); + DEFAULT_PAGE_ALLOCATION_GRANULARITY, + FALSE + ); if (FreeDescriptorEntries !=3D NULL) { // // Enque the free memmory map entries into the list @@ -894,17 +898,41 @@ CoreConvertPagesEx ( // CoreAddRange (MemType, Start, RangeEnd, Attribute); if (ChangingType && (MemType =3D=3D EfiConventionalMemory)) { - // - // Avoid calling DEBUG_CLEAR_MEMORY() for an address of 0 because th= is - // macro will ASSERT() if address is 0. Instead, CoreAddRange() gua= rantees - // that the page starting at address 0 is always filled with zeros. - // if (Start =3D=3D 0) { + // + // Avoid calling DEBUG_CLEAR_MEMORY() for an address of 0 because = this + // macro will ASSERT() if address is 0. Instead, CoreAddRange() + // guarantees that the page starting at address 0 is always filled + // with zeros. + // if (RangeEnd > EFI_PAGE_SIZE) { DEBUG_CLEAR_MEMORY ((VOID *)(UINTN) EFI_PAGE_SIZE, (UINTN) (Rang= eEnd - EFI_PAGE_SIZE + 1)); } } else { - DEBUG_CLEAR_MEMORY ((VOID *)(UINTN) Start, (UINTN) (RangeEnd - Sta= rt + 1)); + // + // If Heap Guard is enabled, the page at the top and/or bottom of + // this memory block to free might be inaccessible. Skipping them + // to avoid page fault exception. + // + UINT64 StartToClear; + UINT64 EndToClear; + + StartToClear =3D Start; + EndToClear =3D RangeEnd; + if (PcdGet8 (PcdHeapGuardPropertyMask) & (BIT1|BIT0)) { + if (IsGuardPage(StartToClear)) { + StartToClear +=3D EFI_PAGE_SIZE; + } + if (IsGuardPage (EndToClear)) { + EndToClear -=3D EFI_PAGE_SIZE; + } + ASSERT (EndToClear > StartToClear); + } + + DEBUG_CLEAR_MEMORY( + (VOID *)(UINTN)StartToClear, + (UINTN)(EndToClear - StartToClear + 1) + ); } } =20 @@ -991,6 +1019,7 @@ CoreUpdateMemoryAttributes ( @param NewType The type of memory the range is going to = be turned into @param Alignment Bits to align with + @param NeedGuard Flag to indicate Guard page is needed or = not =20 @return The base address of the range, or 0 if the range was not found =20 @@ -1001,7 +1030,8 @@ CoreFindFreePagesI ( IN UINT64 MinAddress, IN UINT64 NumberOfPages, IN EFI_MEMORY_TYPE NewType, - IN UINTN Alignment + IN UINTN Alignment, + IN BOOLEAN NeedGuard ) { UINT64 NumberOfBytes; @@ -1093,6 +1123,17 @@ CoreFindFreePagesI ( // If this is the best match so far remember it // if (DescEnd > Target) { + if (NeedGuard) { + DescEnd =3D AdjustMemoryS ( + DescEnd + 1 - DescNumberOfBytes, + DescNumberOfBytes, + NumberOfBytes + ); + if (DescEnd =3D=3D 0) { + continue; + } + } + Target =3D DescEnd; } } @@ -1123,6 +1164,7 @@ CoreFindFreePagesI ( @param NewType The type of memory the range is going to = be turned into @param Alignment Bits to align with + @param NeedGuard Flag to indicate Guard page is needed or = not =20 @return The base address of the range, or 0 if the range was not found. =20 @@ -1132,7 +1174,8 @@ FindFreePages ( IN UINT64 MaxAddress, IN UINT64 NoPages, IN EFI_MEMORY_TYPE NewType, - IN UINTN Alignment + IN UINTN Alignment, + IN BOOLEAN NeedGuard ) { UINT64 Start; @@ -1146,7 +1189,8 @@ FindFreePages ( mMemoryTypeStatistics[NewType].BaseAddress,=20 NoPages,=20 NewType,=20 - Alignment + Alignment, + NeedGuard ); if (Start !=3D 0) { return Start; @@ -1157,7 +1201,8 @@ FindFreePages ( // Attempt to find free pages in the default allocation bin // if (MaxAddress >=3D mDefaultMaximumAddress) { - Start =3D CoreFindFreePagesI (mDefaultMaximumAddress, 0, NoPages, NewT= ype, Alignment); + Start =3D CoreFindFreePagesI (mDefaultMaximumAddress, 0, NoPages, NewT= ype, + Alignment, NeedGuard); if (Start !=3D 0) { if (Start < mDefaultBaseAddress) { mDefaultBaseAddress =3D Start; @@ -1172,7 +1217,8 @@ FindFreePages ( // address range. If this allocation fails, then there are not enough=20 // resources anywhere to satisfy the request. // - Start =3D CoreFindFreePagesI (MaxAddress, 0, NoPages, NewType, Alignment= ); + Start =3D CoreFindFreePagesI (MaxAddress, 0, NoPages, NewType, Alignment, + NeedGuard); if (Start !=3D 0) { return Start; } @@ -1187,7 +1233,7 @@ FindFreePages ( // // If any memory resources were promoted, then re-attempt the allocation // - return FindFreePages (MaxAddress, NoPages, NewType, Alignment); + return FindFreePages (MaxAddress, NoPages, NewType, Alignment, NeedGuard= ); } =20 =20 @@ -1200,6 +1246,7 @@ FindFreePages ( @param NumberOfPages The number of pages to allocate @param Memory A pointer to receive the base allocated m= emory address + @param NeedGuard Flag to indicate Guard page is needed or = not =20 @return Status. On success, Memory is filled in with the base address al= located @retval EFI_INVALID_PARAMETER Parameters violate checking rules defined= in @@ -1215,7 +1262,8 @@ CoreInternalAllocatePages ( IN EFI_ALLOCATE_TYPE Type, IN EFI_MEMORY_TYPE MemoryType, IN UINTN NumberOfPages, - IN OUT EFI_PHYSICAL_ADDRESS *Memory + IN OUT EFI_PHYSICAL_ADDRESS *Memory, + IN BOOLEAN NeedGuard ) { EFI_STATUS Status; @@ -1301,7 +1349,8 @@ CoreInternalAllocatePages ( // If not a specific address, then find an address to allocate // if (Type !=3D AllocateAddress) { - Start =3D FindFreePages (MaxAddress, NumberOfPages, MemoryType, Alignm= ent); + Start =3D FindFreePages (MaxAddress, NumberOfPages, MemoryType, Alignm= ent, + NeedGuard); if (Start =3D=3D 0) { Status =3D EFI_OUT_OF_RESOURCES; goto Done; @@ -1311,12 +1360,19 @@ CoreInternalAllocatePages ( // // Convert pages from FreeMemory to the requested type // - Status =3D CoreConvertPages (Start, NumberOfPages, MemoryType); + if (NeedGuard) { + Status =3D CoreConvertPagesWithGuard(Start, NumberOfPages, MemoryType); + } else { + Status =3D CoreConvertPages(Start, NumberOfPages, MemoryType); + } =20 Done: CoreReleaseMemoryLock (); =20 if (!EFI_ERROR (Status)) { + if (NeedGuard) { + SetGuardForMemory (Start, NumberOfPages); + } *Memory =3D Start; } =20 @@ -1351,8 +1407,11 @@ CoreAllocatePages ( ) { EFI_STATUS Status; + BOOLEAN NeedGuard; =20 - Status =3D CoreInternalAllocatePages (Type, MemoryType, NumberOfPages, M= emory); + NeedGuard =3D IsPageTypeToGuard (MemoryType, Type) && !mOnGuarding; + Status =3D CoreInternalAllocatePages (Type, MemoryType, NumberOfPages, M= emory, + NeedGuard); if (!EFI_ERROR (Status)) { CoreUpdateProfile ( (EFI_PHYSICAL_ADDRESS) (UINTN) RETURN_ADDRESS (0), @@ -1393,6 +1452,7 @@ CoreInternalFreePages ( LIST_ENTRY *Link; MEMORY_MAP *Entry; UINTN Alignment; + BOOLEAN IsGuarded; =20 // // Free the range @@ -1438,14 +1498,20 @@ CoreInternalFreePages ( *MemoryType =3D Entry->Type; } =20 - Status =3D CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemor= y); - - if (EFI_ERROR (Status)) { - goto Done; + IsGuarded =3D IsPageTypeToGuard (Entry->Type, AllocateAnyPages) && + IsMemoryGuarded (Memory); + if (IsGuarded) { + Status =3D CoreConvertPagesWithGuard (Memory, NumberOfPages, + EfiConventionalMemory); + } else { + Status =3D CoreConvertPages (Memory, NumberOfPages, EfiConventionalMem= ory); } =20 Done: CoreReleaseMemoryLock (); + if (IsGuarded) { + UnsetGuardForMemory(Memory, NumberOfPages); + } return Status; } =20 @@ -1843,6 +1909,12 @@ Done: =20 *MemoryMapSize =3D BufferSize; =20 + DEBUG_CODE ( + if (PcdGet8 (PcdHeapGuardPropertyMask) & (BIT1|BIT0)) { + DumpGuardedMemoryBitmap (); + } + ); + return Status; } =20 @@ -1854,6 +1926,7 @@ Done: @param PoolType The type of memory for the new pool pages @param NumberOfPages No of pages to allocate @param Alignment Bits to align. + @param NeedGuard Flag to indicate Guard page is needed or = not =20 @return The allocated memory, or NULL =20 @@ -1862,7 +1935,8 @@ VOID * CoreAllocatePoolPages ( IN EFI_MEMORY_TYPE PoolType, IN UINTN NumberOfPages, - IN UINTN Alignment + IN UINTN Alignment, + IN BOOLEAN NeedGuard ) { UINT64 Start; @@ -1870,7 +1944,8 @@ CoreAllocatePoolPages ( // // Find the pages to convert // - Start =3D FindFreePages (MAX_ADDRESS, NumberOfPages, PoolType, Alignment= ); + Start =3D FindFreePages (MAX_ADDRESS, NumberOfPages, PoolType, Alignment, + NeedGuard); =20 // // Convert it to boot services data @@ -1878,7 +1953,11 @@ CoreAllocatePoolPages ( if (Start =3D=3D 0) { DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "AllocatePoolPages: failed to alloca= te %d pages\n", (UINT32)NumberOfPages)); } else { - CoreConvertPages (Start, NumberOfPages, PoolType); + if (NeedGuard) { + CoreConvertPagesWithGuard (Start, NumberOfPages, PoolType); + } else { + CoreConvertPages (Start, NumberOfPages, PoolType); + } } =20 return (VOID *)(UINTN) Start; diff --git a/MdeModulePkg/Core/Dxe/Mem/Pool.c b/MdeModulePkg/Core/Dxe/Mem/P= ool.c index dd165fea75..b82b51595c 100644 --- a/MdeModulePkg/Core/Dxe/Mem/Pool.c +++ b/MdeModulePkg/Core/Dxe/Mem/Pool.c @@ -14,6 +14,7 @@ WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER= EXPRESS OR IMPLIED. =20 #include "DxeMain.h" #include "Imem.h" +#include "HeapGuard.h" =20 STATIC EFI_LOCK mPoolMemoryLock =3D EFI_INITIALIZE_LOCK_VARIABLE (TPL_NOTI= FY); =20 @@ -169,7 +170,7 @@ LookupPoolHead ( } } =20 - Pool =3D CoreAllocatePoolI (EfiBootServicesData, sizeof (POOL)); + Pool =3D CoreAllocatePoolI (EfiBootServicesData, sizeof (POOL), FALSE); if (Pool =3D=3D NULL) { return NULL; } @@ -214,7 +215,8 @@ CoreInternalAllocatePool ( OUT VOID **Buffer ) { - EFI_STATUS Status; + EFI_STATUS Status; + BOOLEAN NeedGuard; =20 // // If it's not a valid type, fail it @@ -238,6 +240,8 @@ CoreInternalAllocatePool ( return EFI_OUT_OF_RESOURCES; } =20 + NeedGuard =3D IsPoolTypeToGuard (PoolType) && !mOnGuarding; + // // Acquire the memory lock and make the allocation // @@ -246,7 +250,7 @@ CoreInternalAllocatePool ( return EFI_OUT_OF_RESOURCES; } =20 - *Buffer =3D CoreAllocatePoolI (PoolType, Size); + *Buffer =3D CoreAllocatePoolI (PoolType, Size, NeedGuard); CoreReleaseLock (&mPoolMemoryLock); return (*Buffer !=3D NULL) ? EFI_SUCCESS : EFI_OUT_OF_RESOURCES; } @@ -298,6 +302,7 @@ CoreAllocatePool ( @param PoolType The type of memory for the new pool pages @param NoPages No of pages to allocate @param Granularity Bits to align. + @param NeedGuard Flag to indicate Guard page is needed or = not =20 @return The allocated memory, or NULL =20 @@ -307,7 +312,8 @@ VOID * CoreAllocatePoolPagesI ( IN EFI_MEMORY_TYPE PoolType, IN UINTN NoPages, - IN UINTN Granularity + IN UINTN Granularity, + IN BOOLEAN NeedGuard ) { VOID *Buffer; @@ -318,11 +324,14 @@ CoreAllocatePoolPagesI ( return NULL; } =20 - Buffer =3D CoreAllocatePoolPages (PoolType, NoPages, Granularity); + Buffer =3D CoreAllocatePoolPages (PoolType, NoPages, Granularity, NeedGu= ard); CoreReleaseMemoryLock (); =20 if (Buffer !=3D NULL) { - ApplyMemoryProtectionPolicy (EfiConventionalMemory, PoolType, + if (NeedGuard) { + SetGuardForMemory ((EFI_PHYSICAL_ADDRESS)(UINTN)Buffer, NoPages); + } + ApplyMemoryProtectionPolicy(EfiConventionalMemory, PoolType, (EFI_PHYSICAL_ADDRESS)(UINTN)Buffer, EFI_PAGES_TO_SIZE (NoPages)); } return Buffer; @@ -334,6 +343,7 @@ CoreAllocatePoolPagesI ( =20 @param PoolType Type of pool to allocate @param Size The amount of pool to allocate + @param NeedGuard Flag to indicate Guard page is needed or = not =20 @return The allocate pool, or NULL =20 @@ -341,7 +351,8 @@ CoreAllocatePoolPagesI ( VOID * CoreAllocatePoolI ( IN EFI_MEMORY_TYPE PoolType, - IN UINTN Size + IN UINTN Size, + IN BOOLEAN NeedGuard ) { POOL *Pool; @@ -355,6 +366,7 @@ CoreAllocatePoolI ( UINTN Offset, MaxOffset; UINTN NoPages; UINTN Granularity; + BOOLEAN HasPoolTail; =20 ASSERT_LOCKED (&mPoolMemoryLock); =20 @@ -372,6 +384,9 @@ CoreAllocatePoolI ( // Adjust the size by the pool header & tail overhead // =20 + HasPoolTail =3D !(NeedGuard && + ((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) =3D=3D 0)); + // // Adjusting the Size to be of proper alignment so that // we don't get an unaligned access fault later when @@ -391,10 +406,16 @@ CoreAllocatePoolI ( // If allocation is over max size, just allocate pages for the request // (slow) // - if (Index >=3D SIZE_TO_LIST (Granularity)) { - NoPages =3D EFI_SIZE_TO_PAGES(Size) + EFI_SIZE_TO_PAGES (Granularity) = - 1; + if (Index >=3D SIZE_TO_LIST (Granularity) || NeedGuard) { + if (!HasPoolTail) { + Size -=3D sizeof (POOL_TAIL); + } + NoPages =3D EFI_SIZE_TO_PAGES (Size) + EFI_SIZE_TO_PAGES (Granularity)= - 1; NoPages &=3D ~(UINTN)(EFI_SIZE_TO_PAGES (Granularity) - 1); - Head =3D CoreAllocatePoolPagesI (PoolType, NoPages, Granularity); + Head =3D CoreAllocatePoolPagesI (PoolType, NoPages, Granularity, NeedG= uard); + if (NeedGuard) { + Head =3D AdjustPoolHeadA ((EFI_PHYSICAL_ADDRESS)(UINTN)Head, NoPages= , Size); + } goto Done; } =20 @@ -422,7 +443,8 @@ CoreAllocatePoolI ( // // Get another page // - NewPage =3D CoreAllocatePoolPagesI (PoolType, EFI_SIZE_TO_PAGES (Granu= larity), Granularity); + NewPage =3D CoreAllocatePoolPagesI (PoolType, EFI_SIZE_TO_PAGES (Granu= larity), + Granularity, NeedGuard); if (NewPage =3D=3D NULL) { goto Done; } @@ -468,30 +490,39 @@ Done: =20 if (Head !=3D NULL) { =20 + // + // Account the allocation + // + Pool->Used +=3D Size; + // // If we have a pool buffer, fill in the header & tail info // Head->Signature =3D POOL_HEAD_SIGNATURE; Head->Size =3D Size; Head->Type =3D (EFI_MEMORY_TYPE) PoolType; - Tail =3D HEAD_TO_TAIL (Head); - Tail->Signature =3D POOL_TAIL_SIGNATURE; - Tail->Size =3D Size; Buffer =3D Head->Data; - DEBUG_CLEAR_MEMORY (Buffer, Size - POOL_OVERHEAD); + + if (HasPoolTail) { + Tail =3D HEAD_TO_TAIL (Head); + Tail->Signature =3D POOL_TAIL_SIGNATURE; + Tail->Size =3D Size; + + Size -=3D POOL_OVERHEAD; + } else { + Size -=3D SIZE_OF_POOL_HEAD; + } + + DEBUG_CLEAR_MEMORY (Buffer, Size); =20 DEBUG (( DEBUG_POOL, "AllocatePoolI: Type %x, Addr %p (len %lx) %,ld\n", PoolType, Buffer, - (UINT64)(Size - POOL_OVERHEAD), + (UINT64)Size, (UINT64) Pool->Used )); =20 - // - // Account the allocation - // - Pool->Used +=3D Size; =20 } else { DEBUG ((DEBUG_ERROR | DEBUG_POOL, "AllocatePool: failed to allocate %l= d bytes\n", (UINT64) Size)); @@ -588,6 +619,34 @@ CoreFreePoolPagesI ( (EFI_PHYSICAL_ADDRESS)(UINTN)Memory, EFI_PAGES_TO_SIZE (NoPages)); } =20 +/** + Internal function. Frees guarded pool pages. + + @param PoolType The type of memory for the pool pages + @param Memory The base address to free + @param NoPages The number of pages to free + +**/ +STATIC +VOID +CoreFreePoolPagesWithGuard ( + IN EFI_MEMORY_TYPE PoolType, + IN EFI_PHYSICAL_ADDRESS Memory, + IN UINTN NoPages + ) +{ + EFI_PHYSICAL_ADDRESS MemoryGuarded; + UINTN NoPagesGuarded; + + MemoryGuarded =3D Memory; + NoPagesGuarded =3D NoPages; + + AdjustMemoryF (&Memory, &NoPages); + CoreFreePoolPagesI (PoolType, Memory, NoPages); + + UnsetGuardForMemory (MemoryGuarded, NoPagesGuarded); +} + /** Internal function to free a pool entry. Caller must have the memory lock held @@ -616,6 +675,8 @@ CoreFreePoolI ( UINTN Offset; BOOLEAN AllFree; UINTN Granularity; + BOOLEAN IsGuarded; + BOOLEAN HasPoolTail; =20 ASSERT(Buffer !=3D NULL); // @@ -628,24 +689,32 @@ CoreFreePoolI ( return EFI_INVALID_PARAMETER; } =20 - Tail =3D HEAD_TO_TAIL (Head); - ASSERT(Tail !=3D NULL); + IsGuarded =3D IsPoolTypeToGuard (Head->Type) && + IsMemoryGuarded ((EFI_PHYSICAL_ADDRESS)(UINTN)Head); + HasPoolTail =3D !(IsGuarded && + ((PcdGet8 (PcdHeapGuardPropertyMask) & BIT7) =3D=3D 0)); =20 - // - // Debug - // - ASSERT (Tail->Signature =3D=3D POOL_TAIL_SIGNATURE); - ASSERT (Head->Size =3D=3D Tail->Size); - ASSERT_LOCKED (&mPoolMemoryLock); + if (HasPoolTail) { + Tail =3D HEAD_TO_TAIL (Head); + ASSERT (Tail !=3D NULL); =20 - if (Tail->Signature !=3D POOL_TAIL_SIGNATURE) { - return EFI_INVALID_PARAMETER; - } + // + // Debug + // + ASSERT (Tail->Signature =3D=3D POOL_TAIL_SIGNATURE); + ASSERT (Head->Size =3D=3D Tail->Size); =20 - if (Head->Size !=3D Tail->Size) { - return EFI_INVALID_PARAMETER; + if (Tail->Signature !=3D POOL_TAIL_SIGNATURE) { + return EFI_INVALID_PARAMETER; + } + + if (Head->Size !=3D Tail->Size) { + return EFI_INVALID_PARAMETER; + } } =20 + ASSERT_LOCKED (&mPoolMemoryLock); + // // Determine the pool type and account for it // @@ -680,14 +749,27 @@ CoreFreePoolI ( // // If it's not on the list, it must be pool pages // - if (Index >=3D SIZE_TO_LIST (Granularity)) { + if (Index >=3D SIZE_TO_LIST (Granularity) || IsGuarded) { =20 // // Return the memory pages back to free memory // - NoPages =3D EFI_SIZE_TO_PAGES(Size) + EFI_SIZE_TO_PAGES (Granularity) = - 1; + NoPages =3D EFI_SIZE_TO_PAGES (Size) + EFI_SIZE_TO_PAGES (Granularity)= - 1; NoPages &=3D ~(UINTN)(EFI_SIZE_TO_PAGES (Granularity) - 1); - CoreFreePoolPagesI (Pool->MemoryType, (EFI_PHYSICAL_ADDRESS) (UINTN) H= ead, NoPages); + if (IsGuarded) { + Head =3D AdjustPoolHeadF ((EFI_PHYSICAL_ADDRESS)(UINTN)Head); + CoreFreePoolPagesWithGuard ( + Pool->MemoryType, + (EFI_PHYSICAL_ADDRESS)(UINTN)Head, + NoPages + ); + } else { + CoreFreePoolPagesI ( + Pool->MemoryType, + (EFI_PHYSICAL_ADDRESS)(UINTN)Head, + NoPages + ); + } =20 } else { =20 --=20 2.14.1.windows.1 _______________________________________________ edk2-devel mailing list edk2-devel@lists.01.org https://lists.01.org/mailman/listinfo/edk2-devel